Как сделать двигатель для лодки


Как сделать двигатель для лодки

Как сделать двигатель для лодки

Как сделать двигатель для лодки



ЕДИНЫЙ ДВИГАТЕЛЬ ДЛЯ ПОДВОДНОЙ ЛОДКИ

Александр Маринин

Классическая дизель-электрическая главная энергетическая установка подводной лодки (ДЭГЭУ) - фактически мера вынужденная, да такие подлодки на самом деле и не подводные вовсе, а скорее ныряющие. Все они, как киты или дельфины, вынуждены с определенной периодичностью подниматься на поверхность, чтобы запастись кислородом и заодно зарядить аккумуляторы. Идеальным для подводной лодки является единый двигатель для надводного и подводного хода. Ведь у лодки с ДЭГЭУ в подводном положении дизель фактически становится балластом (если только лодка не использует так называемый режим работы дизеля под водой (РДП), когда, двигаясь на перископной глубине, она забирает атмосферный воздух с помощью специальной трубы с клапаном от заливания - немцы назвали это устройство шнорхелем). В надводном положении обычной лодке (если на ней не реализован режим электродвижения) становятся "ненужными" электромоторы и уж, во всяком случае, аккумуляторные батареи. Таким образом, как большинство двухсредных или двухрежимных аппаратов, подводная лодка постоянно "возит" в себе довольно массивное, объемное и дорогостоящее оборудование, которое используется только часть времени.

В поисках единого двигателя были опробованы самые разнообразные устройства. Первым из них был… человек, который потреблял сравнительно мало воздуха, но в качестве двигателя оказался слишком маломощен. Идея чисто электрической подводной лодки также зашла в тупик, поскольку даже с использованием самых совершенных аккумуляторов лодка способна проплыть не более нескольких сот миль. Постепенно конструкторы подлодок пришли к выводу, что единый двигатель следует создавать на базе мотора не подводного хода, а наоборот - надводного. Для двигателей внутреннего сгорания наметились два пути: один впоследствии привел к РДП, а другой был связан с разработкой автономной силовой установки, не нуждающейся в атмосферном воздухе.

Первыми, кто попытался заставить двигатель внутреннего сгорания работать под водой, стали французские инженеры Бертен и Петитхомм. Результаты испытаний разочаровали.

Гораздо более удачную попытку создать подводную лодку с единым двигателем предпринял наш соотечественник инженер С.К. Джевецкий. По его замыслу в качестве единого предполагались два четырехтактных бензиновых двигателя фирмы "Панар-Левассор" мощностью по 130 л.с. каждый, работающих с помощью зубчатых передач на один гребной вал с четырехлопастным винтом. В надводном положении бензиномоторы работали по обычной схеме. В подводном положении для обеспечения их работы в машинное отделение подавался воздух, хранившийся в 45 воздухохранителях при давлении 200 атмосфер. Общий запас составлял около 11 м3, чего должно было хватить на 4 часа работы бензиномоторов. Давление воздуха с 200 атмосфер до 18 снижалось в редукционном клапане (детандере). Выхлопные газы откачивались через надстройку, служившую своеобразным глушителем, в отводную трубу, расположенную под килем и имевшую большое количество мелких отверстий. Выходя мелкими струйками из многочисленных отверстий отводной трубы, выхлопные газы должны были растворяться в воде.

Строительство подводной лодки, получившей наименование "Почтовый", началось в 1906 г. 30 сентября 1908 г. она вошла в состав флота. Несмотря на то, что эксплуатация "Почтового" подтвердила возможность подводного плавания с двигателями внутреннего сгорания, работающими в подводном положении, подводная лодка этого типа так и осталась единственной. Не удалось достичь бесследности движения лодки под водой - на поверхности были заметны пузырьки отработанных газов. Мощность газового насоса оказалась недостаточной для откачки выхлопных газов от обоих бензиномоторов, поэтому в подводном положении работал только один. Сложность и низкая конструктивная надежность механизмов требовали исключительно высокой квалификации личного состава, обслуживавшего лодку. Большие нарекания вызывала большая шумность бензиномоторов; кроме того, на зарядку воздухохранителей уходило от 2 до 3 дней.

Первая мировая война прервала работы по созданию единых двигателей для подводных лодок, но уже с 1920-х годов в Советском Союзе и Германии вновь начались исследования в этой области. При этом от идеи просто разместить на подводной лодке большой запас воздуха сразу отказались. Решили хранить только кислород, причем в жидком состоянии, когда он занимает примерно в пять раз меньший объем, чем в баллонах под давлением 150 кгс/см2. Да и сосуд для хранения жидкого кислорода намного легче, чем стальные толстостенные баллоны равной емкости. Однако жидкий кислород непрерывно испаряется, а способы, замедляющие этот процесс, в тот период времени не были разработаны.

В отечественном флоте в 1930-е годы изучались две схемы обеспечения работы дизелей под водой или, как их стали называть, схемы работы дизеля по замкнутому циклу: "РЕДО" С.А. Базилевского и "ЕД-ХПИ" В.С. Дмитриевского.

Первой в 1937 г. начали переоборудование подводной лодки XII серии под опытную энергетическую установку "РЕДО" (регенеративный единый двигатель особого назначения). Эта подлодка получила наименование С-92 и бортовой номер Р-1. Принцип работы установки "РЕДО" состоял в следующем: в подводном положении выхлопные газы дизеля очищались от механических примесей и влаги, охлаждались и направлялись обратно на всасывающий коллектор дизеля. Затем к ним добавлялся газообразный кислород. Избыток выхлопных газов отсасывался компрессором и сжимался, при этом углекислый газ, составлявший около 75 % объема избыточных газов, превращался в жидкую углекислоту, которая сливалась в специальные баллоны и периодически удалялась за борт. Газообразный остаток, в основном кислород, снова возвращался в цикл. Осенью 1938 г. подлодка С-92 вышла на испытания, которые продолжались более двух лет. К началу Великой Отечественной войны они еще не закончились, и подводную лодку законсервировали. В связи с тем, что к окончанию войны и в первые послевоенные годы были разработаны и проверены в действии более простые циклы единых двигателей, к испытаниям "РЕДО" не возвращались. После войны подводная лодка использовалась для отработки других типов единых двигателей.

В 1938-1939 гг. ОКБ НКВД разработало проект подводной лодки с опытной единой энергетической установкой "ЕД-ХПИ" (единый двигатель с химическим поглотителем). Принцип работы установки заключался в следующем. Выхлопные газы из дизеля поступали в газоохладитель, где они охлаждались и освобождались от водяных паров и частично от механических примесей. Далее они направлялись в специальные химические фильтры, где отделялся углекислый газ и окись углерода. Затем производилось дальнейшее освобождение выхлопных газов от избыточной влаги, они обогащались газифицированным кислородом, и в дизельный отсек поступала газовая смесь, близкая по своему составу к обычному воздуху.

Подводную лодку проекта 95 с "ЕД-ХПИ" спустили на воду в Ленинграде 1 июня 1941 г. С началом войны ее отбуксировали в Горький, а затем в Баку. Ходовые испытания закончили после войны, а в состав ВМФ корабль приняли только в 1946 г. Однако все мытарства окупились сторицей. В первой половине 1950-х гг. в состав отечественного флота вошло 30 подводных лодок проекта А615 с единым двигателем, созданным с учетом опыта эксплуатации лодки проекта 95. Советский Союз стал единственной военно-морской державой, серийно строившей корабли с подобной силовой установкой.

Второй страной, где велись интенсивные работы по созданию подводных лодок с единым двигателем внутреннего сгорания, являлась Германия. У немцев такой двигатель назывался "крейслауф" - круговорот. Создать работоспособный дизель, работающий по замкнутому циклу, немцы смогли в годы Второй мировой войны. В 1943 г. командование германских ВМС приняло решение построить экспериментальную подлодку XVII серии с дизелем "крейслауф" мощностью 1500 л. с. В 1944 г. ее заложили под обозначением U-798, но до окончания войны не успели спустить на воду.

В 1930-х годах предпринималась еще одна попытка создать двигатель, работающий по замкнутому циклу, но с применением в качестве окислителя не кислорода, а перекиси водорода. Автором идеи был германский инженер Гельмут Вальтер.
Вальтер пришел к выводу, что наиболее эффективно свойства концентрированной перекиси водорода можно использовать не в дизельной, а в турбинной установке. В 1936 г. такую экспериментальную парогазовую турбинную энергетическую установку построили в Киле. Она работала по так называемому "холодному" циклу. Продукты реакции разложения высококонцентрированного раствора перекиси водорода подавались в турбину, вращавшую через понижающий редуктор гребной винт, а затем отводились за борт.

Первая энергетическая установка имела два очевидных недостатка. Кислород, содержащийся в отводимых за борт продуктах реакции, плохо растворяется в воде, а его пузырьки демаскируют подводную лодку. Кроме того, в условиях корабля, изолированного от атмосферы толщей воды, выбрасывать за борт кислород было неоправданным расточительством. Поэтому логическим продолжением "холодного" процесса являлся "горячий", при котором в продукты разложения перекиси подавалось органическое топливо, которое затем сжигалось. В таком варианте мощность установки резко возрастала и, кроме того, уменьшалась следность, так как продукт горения - углекислый газ - значительно лучше кислорода растворяется в воде. И все же на первом этапе работ Вальтер ограничился установкой с "холодным" циклом, поскольку она была проще и безопаснее.
В 1937 г. Вальтер доложил результаты своих опытов руководству германских ВМС и заверил всех в возможности создания подводных лодок с парогазовыми турбинными установками с невиданной скоростью подводного хода - более 20 узлов.

Командование кригсмарине приняло решение о форсировании создания лодки. В процессе ее проектирования решались вопросы, связанные не только с применением необычной энергетической установки. Для получения проектной скорости подводного хода порядка 25 узлов обводы корпуса обычной подводной лодки и способы управления ею в подводном положении стали неприемлемы. Пришлось прибегнуть к опыту авиастроителей. Выбирая оптимальную форму и размеры корпуса лодки, испытали несколько моделей в аэродинамической трубе. В 1938 г. в Киле заложили первую в мире опытную подводную лодку с энергетической установкой на перекиси водорода водоизмещением 80 т, получившую обозначение V-80. Проведенные в 1940 г. испытания буквально ошеломили - подлодка развила под водой скорость 28,1 узла.

Несмотря на великолепные результаты испытаний, дальнейшие работы застопорились - шла Вторая мировая война, и германское командование сделало ставку на уже отработанные образцы вооружения. Только в 1941 г. началась разработка, а затем постройка подводной лодки V-300 с парогазовой турбиной, работавшей по так называемому "горячему" циклу.

U-791 так и не достроили, зато заложили четыре опытно-боевые подводные лодки двух серий - Wa-201 (Wa - Вальтер) и Wk-202 (Wk - Вальтер-Крупп). По своим энергетическим установкам они были идентичны, но отличались конструкцией корпуса. С 1943 г. начались их испытания. В частности, лодка U-792 (серия Wa-201), имея запас перекиси водорода 40 т, почти четыре с половиной часа шла под форсажной турбиной и четыре часа поддерживала подводную скорость 19,5 узла. Не дожидаясь окончания испытаний опытных подлодок, в январе 1943 г. германской промышленности был выдан заказ на постройку еще 12 кораблей с аналогичными энергетическими установками. До окончания войны немцы успели спустить на воду только пять единиц, три из которых прошли испытания. Ни одна из лодок с двигателями Вальтера в боевых действиях не участвовала. Перед капитуляцией все они были затоплены экипажами. Но, воспользовавшись тем, что это произошло на мелководье, две лодки подняли. Затем U-1406 отправилась в США, a U-1407 - в Великобританию. Там специалисты тщательно изучили немецкие новинки, а британцы даже провели натурные испытания U-1407. В 1956 г. англичане ввели в строй свои опытовые подлодки "Эксплорер" и "Экскалибур" с двигателями Вальтера. Однако время ушло: американцы уже вовсю внедряли ядерные энергетические установки, по этому же пути решили идти и британцы.

После окончания Второй мировой войны до начала 1950-х годов все ведущие военно-морские державы занимались изучением германского наследия. Именно поэтому все первые послевоенные проекты подводных лодок в какой-то мере являлись национальными аналогами последних германских разработок. Советский Союз строил подлодки с единым двигателем, но на базе собственных предвоенных разработок. В 1960-е годы об идее неядерного единого двигателя для подлодок опять вспомнили. Речь идет о превращении химической энергии непосредственно в электрическую без процесса горения или механического движения, то есть выработке электроэнергии бесшумным способом.

Электрохимический генератор создан на базе топливных элементов. По сути, это аккумуляторная батарея с постоянной подзарядкой. Принцип работы энергетической установки с электрохимическим генератором был тем же, что и 150 лет назад, когда англичанин Уильям Роберт Гров случайно обнаружил при электролизе, что две платиновые полоски, обдуваемые - одна кислородом, а другая - водородом, помещенные в водный раствор серной кислоты, дают ток. В результате реакции, кроме электрического тока, образовывались тепло и вода. При этом энергетическое превращение происходит бесшумно, а единственным побочным продуктом реакции является дистиллированная вода, которой достаточно легко найти применение на подводной лодке. Идея применения электрохимических генераторов для подводного хода сулила немалые преимущества, в первую очередь, давала существенное увеличение непрерывной дальности подводного плавания экономическим ходом по сравнению с дизель-электрическими подводными лодками. В известной степени интерес к электрохимическим генераторам "подогревался" тем обстоятельствам, что в США в 1960-е годы бортовые системы пилотируемых космических кораблей "Джемини" (орбитальные полеты) и "Аполлон" (высадка на Луну) получали питание от топливных элементов.

В Советском Союзе в 1989 г. закончились межведомственные испытания подводной лодки проекта 613Э с опытной энергетической установкой с электрохимическим генератором (разработчики - НПО "Квант" минэлектротехпрома и НПО "Криогенмаш" минхиммаша). Переоборудование вместе с ремонтом корабля продолжалось более 10 лет.

Сама установка электрохимического генератора мощностью 280 кВт кроме топливных элементов включала в себя системы управления, обеспечения рабочими компонентами и др.

Новые условия эксплуатации лодки потребовали дооборудовать место ее базирования.

В течение шести месяцев специальная комиссия провела расширенные межведомственные испытания энергетической установки с электрохимическим генератором (ЭХГ). Впервые в практике отечественного кораблестроения был испытан в корабельных условиях и показал соответствующие проекту характеристики генератор "ЭХГ-280". Был сделан вывод о том, что ЭХГ как неатомный экологически чистый малошумный источник электроэнергии с прямым преобразованием химической энергии в электрическую является перспективным для применения в подводном судостроении. Он обладает рядом преимуществ перед традиционными источниками электроэнергии, в частности, позволяет в 5...10 раз увеличить дальность непрерывного подводного плавания экономическим ходом.

В то же время, несмотря на очевидные преимущества установки на топливных элементах, она не обеспечивает требуемые оперативно-тактические характеристики подводной лодки океанского класса, прежде всего в части, касающейся выполнения скоростных маневров при преследовании цели или уклонении от атаки противника. Поэтому германские подводные лодки проекта 212 оснащаются комбинированной двигательной установкой, в которой для движения на высоких скоростях под водой используются аккумуляторные батареи или топливные элементы, а для плавания в надводном положении - традиционный дизель-генератор, в состав которого входит 16-цилиндровый V-образный дизель и синхронный генератор переменного тока.

На разработке двигателей Стирлинга, или двигателей с внешним подводом теплоты, сосредоточили свои усилия шведские специалисты (об истории двигателя Стирлинга см. ). Конструкция предусматривает наличие единой камеры сгорания для всех цилиндров, использование поршней двойного действия, выполняющих функции рабочего поршня и вытеснителя. На шведских подлодках типа "Готланд" два двигателя Стирлинга мощностью чуть более 100 л. с. обеспечили увеличение продолжительности пребывания под водой в 7 раз (до 14 суток).


Источник: http://engine.aviaport.ru/issues/41/page40.html


Как сделать двигатель для лодки

Как сделать двигатель для лодки

Как сделать двигатель для лодки

Как сделать двигатель для лодки

Как сделать двигатель для лодки

Как сделать двигатель для лодки

Как сделать двигатель для лодки

Как сделать двигатель для лодки

Читать далее: